Analysis and Control of Limit Cycle Bifurcations
نویسندگان
چکیده
The chapter addresses bifurcations of limit cycles for a general class of nonlinear control systems depending on parameters. A set of simple approximate analytical conditions characterizing all generic limit cycle bifurcations is determined via a first order harmonic balance analysis in a suitable frequency band. Moreover, due to the existing connection between limit cycle bifurcations and routes to chaos, the obtained predictions can also give a rough indication of possible regions of chaotic dynamics. Based on these analysis results, an approach to limit cycle bifurcation control is then proposed. The control design is based on a frequency interpretation of the bifurcation conditions obtained via harmonic balance approach. Examples of the control technique for a number of important bifurcations are reported.
منابع مشابه
Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کاملCell Cycle Vignettes Analysis of Cell Cycle Dynamics by Bifurcation Theory
Bifurcation theory provides a classification of the expected ways in which the number and/or stability of invariant solutions (‘attractors’ and ‘repellors’) of nonlinear ordinary differential equations may change as parameter values are changed. The most common qualitative changes are ‘saddle-node’ bifurcations, ‘Hopf’ bifurcations, and ‘SNIPER’ bifurcations. At a saddle-node bifurcation, a pai...
متن کاملTwo Degenerate Boundary Equilibrium Bifurcations in Planar Filippov Systems
We contribute to the analysis of codimension-two bifurcations in discontinuous systems by studying all equilibrium bifurcations of 2D Filippov systems that involve a sliding limit cycle. There are only two such local bifurcations: (1) a degenerate boundary focus, which we call the homoclinic boundary focus (HBF), and (2) the boundary Hopf (BH). We prove that—besides local bifurcations of equili...
متن کاملFe b 20 09 Limit Cycle Bifurcations in a Quartic Ecological Model ⋆
In this paper we complete the global qualitative analysis of a quartic ecological model. In particular, studying global bifurcations of singular points and limit cycles, we prove that the corresponding dynamical system has at most two limit cycles.
متن کاملNumerical Periodic Normalization for Codim 1 Bifurcations of Limit Cycles
Abstract. Explicit computational formulas for the coefficients of the periodic normal forms for all codim 1 bifurcations of limit cycles in generic autonomous ODEs are derived. They include second-order coefficients for the fold (limit point) bifurcation, as well as third-order coefficients for the flip (period-doubling) and Neimark-Sacker (torus) bifurcations. The formulas are independent of t...
متن کامل